Optimal Bayesian Experimental Design Version 1.0.1

Python module 'optbayesexpt' uses optimal Bayesian experimental design methods to control measurement settings in order to efficiently determine model parameters. Given an parametric model - analogous to a fitting function - Bayesian inference uses each measurement 'data point' to refine model parameters. Using this information, the software suggests measurement settings that are likely to efficiently reduce uncertainties. A TCP socket interface allows the software to be used from experimental control software written in other programming languages. Code is developed in Python, and shared via GitHub's USNISTGOV organization.

Dáta a Dátové zdroje

Doplňujúce informácie

Pole Hodnota
Správca Robert D. McMichael
Posledná aktualizácia Marec 5, 2021, 07:22 (EST)
Vytvorené Marec 5, 2021, 07:22 (EST)
Identifier ark:/88434/mds2-2230
Jazyk {en}
Modified 2020-04-01 00:00:00
Theme {Physics:Magnetics}
accessLevel public
accrualPeriodicity irregular
bureauCode {006:55}
catalog_@context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
catalog_conformsTo https://project-open-data.cio.gov/v1.1/schema
catalog_describedBy https://project-open-data.cio.gov/v1.1/schema/catalog.json
encoding utf8
harvest_url http://catalog.data.gov/dataset/08ab92ad-997e-4f29-9a4d-4c0c2d2a3f5d
landingPage https://data.nist.gov/od/id/mds2-2230
license https://www.nist.gov/open/license
programCode {006:045}
publisher National Institute of Standards and Technology
resource-type Dataset
source_datajson_identifier true
source_hash 365192c2affcfa5648e2994f18205591535b19eb
source_schema_version 1.1