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I8 Cropland Data Layer

* Produced by USDA NASS

« Satellite remote sensing data source include Landsat
OLI/TM/ETM, Resourcesat-1 AWIFS, UK-DMC-2

 Decision-tree-based classification scheme trained with
substantial number of June survey results, Farm Service
Agency (FSA) Form 578, Common Land Unit (CLU)

* Primarily 30-meter spatial resolution

« Completely annual coverage of CONUS since 2008
 Distributed through CropScape

« Accuracy is close to 95%

* Release to public in January next year.
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Crop Condition
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« Crop conditions
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IS The Challenges

e Current CDL production relies on surveys from Farm
Agency

* Release to public use after the growing season — January
the following year, although the internal use may be as
early as mid to late growing season.

« The complete coverage of CONUS is only available since
2008 — the time series may not be long enough to support
temporally-based modeling.

* Big data challeges

— Volume: nearly petabyte of data needs to be analyzed and
mined

— Variety: multiple sensors, multiple forms of data
— Veracity: uncertainty of CDL and trained data
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QI8 The Trend

« Using multiple sensors and multiple source of data
(Waldner et al. 2017)

« High temporal/spatial resolution data (Planet Labs)

* Deep learning in cloud computing environment ( Warren et
al. 2015)

« Improved crop classification using crop knowledge of
previous years (Hao et al. 2016)
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§’§ The Roadmap to meet cropland classification

reguirements

* Learn from massive data
« Classify/predict the crop types

— Classification stage
e Training stage N\ - - N
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| gig Increase the speed of computation through
\y ey arallelism

 Model parallelism
« Data parallelism

Model Parallelism Data Parallelism
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(Split into m x n partitions,
where i={1,m}, j={1,n})
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N | Experiment

« Experiment RNN with multiple years of Landsat data
sources

« Trained with multiple years ofCDL
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IS What’s next?

« Continue on experimenting the alternative deep learning
approaches to enhance the filed crop classification

« Collecting and incorporating more data sources
« Extracting features for crop classification

« Leverage both cloud computing, GPU-enhanced
computing, and deep learning to learn from big data
(multiple sensor data, historical data, and other data)
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