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Cropland Data Layer

• Produced by USDA NASS
• Satellite  remote sensing data source include  Landsat

OLI/TM/ETM, Resourcesat-1 AWiFS, UK-DMC-2
• Decision-tree-based classification scheme  trained with 

substantial number of June survey results, Farm Service 
Agency (FSA) Form 578, Common Land Unit (CLU)

• Primarily 30-meter spatial resolution
• Completely annual coverage of  CONUS since 2008
• Distributed through CropScape
• Accuracy is close to 95%
• Release to public in January next year.
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CropScape

• Standard Web Services
– Rendering
– Accessing
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Crop Condition

• Crop conditions
– NDVI
– VCI
– RVCI
– RMVCI
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The Challenges

• Current CDL production relies on surveys from Farm 
Agency

• Release to public use after the growing season – January 
the following year, although the internal use may be as 
early as mid to late growing season.

• The complete coverage of CONUS is only available since 
2008 – the time series may not be long enough to support 
temporally-based modeling.

• Big data challeges
– Volume: nearly petabyte of data needs to be analyzed and 

mined
– Variety: multiple sensors, multiple forms of data
– Veracity: uncertainty of CDL and trained data
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The Trend

• Using multiple sensors and multiple source of data 
(Waldner et al. 2017)

• High temporal/spatial resolution data (Planet Labs)
• Deep learning in cloud computing environment ( Warren et 

al. 2015)
• Improved crop classification using crop knowledge of 

previous years (Hao et al. 2016)
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The Roadmap to meet cropland classification 
requirements

• Learn from massive data
• Classify/predict the crop types
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Increase the speed of computation through 
parallelism

• Model parallelism
• Data parallelism
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Experiment

• Experiment RNN with multiple years of  Landsat data 
sources

• Trained with multiple years ofCDL
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What’s next?

• Continue on experimenting the alternative deep learning 
approaches to enhance the filed crop classification

• Collecting and incorporating more data sources
• Extracting features for crop classification
• Leverage both cloud computing, GPU-enhanced 

computing, and deep learning to learn from big data 
(multiple sensor data, historical data, and other data)


